

Guiding GenAl Technology Providers Using CSAAl Controls Framework

Strategies to manage GenAl and Cloud Safely

PRESENTED BY

Troy Leach

Chief Strategy Officer, CSA

225k+

INDIVIDUAL MEMBERS

140+

CHAPTERS

500+

35+

CORPORATE MEMBERS

ACTIVE WORKING GROUPS

2,700+

STAR REGISTRY ENTRIES (provider certification) 12,000+

CONTRIBUTING RESEARCH VOLUNTEERS

Research, Best Practices, Education and Certification

Strategic partnerships with governments, research institutions, professional associations and industry 2009

CSA FOUNDED

SEATTLE/BELLINGHAM// GLOBAL HEADQUARTERS

BERLIN //
EMEA HEADQUARTERS

World's most vital cybersecurity community

SINGAPORE // ASIA PACIFIC HEADQUARTERS

Resilience

Regulatory Environment

Organizational Responsibilities, Priorities & Roadmap

State of Industry

Free Online Course:

Introduction to Generative Al & Prompt Engineering

Traditional Risk Management Concepts Similar But Different

Al Risk Management

- Comprehensive Auditing: Assess entire Al lifecycle, security, privacy, and ethics
- Risk-Based Approach: Proactive identification and mitigation of emerging Al risks
- **Supply Chain:** Vendor assessment, SAIBOM implementation, vulnerability management

Critical Actions

- Infrastructure: Implement robust segmentation, monitoring, and incident response controls
- **Data Protection:** Advanced privacy methods, encryption, access controls, data residency
- Continuous Evaluation: Regularly assess AI system trustworthiness and security posture.

Risk - Traditional Controls will be defeated by Al

- Bio deepfake target IT Help Desk and Admins
- More easily detected software and crypto vulnerabilities
- Emergence of more dynamic DDOS
- Volume of threat actors could increase significantly

Scammers siphon \$25M from engineering firm Arup via AI deepfake 'CFO'

Cybercriminals utilized AI deepfakes to falsely pose as Arup's CFO and other employees, leading a staff member to transfer \$25 million to Hong Kong bank accounts.

More autonomy of enterprise activities requires dynamic oversight

Agentic Al

Autonomous decision-making

agents interfacing
with SaaS and other
services that will
execute various tasks
and optimize
resources

RAG Systems

Retrieval-augmented
Generation (RAG)
enables access in
real-time to
enterprise data stored
in structured or
unstructured, locations
within the enterprise

Cloud LLMs

Scalable Large Language
Models (LLM) with
dynamic resource
allocation, extensive
processing capabilities
within a multi-tenant
environment

Agentic Al Risk

Threat Vector Examples

Agent Impersonation & Privilege Escalation

Unauthorized API Access & Token Theft

Data Exfiltration via Prompt Injection

Recommended Zero Trust Controls

Strong Identity Controls

MFA, continuous authentication

Granular Access Management

RBAC, least privilege, dynamic permissions

Agent Boundary Controls

Sandboxing, resource limits, behavior monitoring

Agentic Al systems require additional security layers beyond traditional IAM frameworks

When AI chatbots go wrong....

Top Security Uses for Al

Survey by Google and CSA on Security Use Cases for Al.

Reasoning and Logic enables better Rule Creation

Creative Problem Solving Empowers Attack Simulation

Pattern Identification Increases Regulatory Adherence

Synthesizing large data sets Improves **Detection**

21%	Rule creation	13%	Natural language to search
19%	Attack simulation	13%	Threat summarization
19%	Compliance violation monitoring	13%	Data loss prevention, IP protection
16%	Network detection	11%	User Behavior analysis
16%	Reduce false positives	10%	Automated report generation
15%	Training development and support	10%	Endpoint detection
14%	Anomaly classification	9%	Event log summarization

Can conduct Root Cause Analysis by combing through massive amounts of data <u>quickly</u> to identify anomalies in network traffic and system logs to pinpoint origin of attack

Al tools can reconstruct the sequence of events leading up to an incident

Intelligence Analysis

Aggregate and analyze threat intelligence from multiple sources, continuously to report on emerging attack vectors

Can be trained to initiate predefined responses such as isolating affected systems

Training and Onboarding Staff

Al can analyze data from different department and roles to understand unique challenges and generate training material relevant to the employee

When staff make an inquire for elevated access which is not permitted, AI can Slack the individual to coach them on why access was denied

Documentation and Reporting

Can monitor all changes to the environment and create <u>continuous</u> <u>assurance</u> that the all documentation is current

Can generate multi-queries to analyze various regulations and use cases for data and assign controls to relevant framework

Regulatory Outlook

Emphasis on Consumer Protection, Transparency and Operational Resiliency

- **I.Al Act (EU)** Classification of Al systems with risk assessments and disclosure of use, human oversight
- 2. Algorithmic Accountability Act (US) Proposed legislation for high-impact decision making
- 2. Basel IV Being Implemented (Jan 2025)
- Revised standardized approach for credit risk and new market risk framework
- Changes to risk calculation methods and use of AI/ML models for risk assessment
- 3. SEC's Proposed Al Governance Rules Under Consideration
- Focus on Al usage in trading and risk management with emphasis on explainability and accountability
- •Documentation of AI systems with regular testing and validation along with disclosure of AI use
- 4. DORA (Digital Operational Resilience Act) (Jan 17, 2025)
- •Third-party Risk Management with Incident reporting mechanisms and operational resilience testing
- 5. Consumer Financial Protection Regulations Evolving
- •Enhanced privacy protections and focus on algorithmic fairness

Things to Consider

- 1. Compliance Costs
- 2. International Alignment
- 3. Technical Complexity
- 4. Staff Training
- 5. Documentation Enhancement

Guardrails for GenAl

Several frameworks and public guidance have emerged to assess and manage AI risks

NIST AI Risk Management Framework

ISO/IEC JTC 1/SC 4201

Al Controls Matrix (AICM)

WEF AI Governance Alliance (AIGA) – Presidio AI Framework

EU Commission – Ethics Guidelines for Trustworthy Al

EC HLEG Ethics Guidelines for Trustworthy AI

Singapore's Model AI Governance Framework

Australia's AI Ethics Framework

Japan's Al Strategy 2021

DARPA Explainable AI (XAI) Program

IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems

OASIS COSAI

Common Trustworthy Objectives:

Technically reliable and safe

Demonstrative privacy and data governance

Ethical Fairness and avoidance of bias

Transparent shared responsibility

Proactive risk identification and management

Human oversight

Components

- Control Framework: Al Control Matrix (AICM)
- Certification scheme
- Authorized auditors
- Transparency registry
- Technology enablement
- Governance structure

Thinking Gen AI in Cloud terms

Security, Trust, Assurance & Risk (STAR) for Al

Focus on Multimodal Gen Al services

Key stakeholders:

- Gen-Al Frontier Model Owners
- (Value Added) Al Service Developers and Providers, and
- Al Services Business Users

Focus on technical and governance aspects related to cybersecurity, transparency, accountability, and explainability.

The audit and evaluation approach will be risk-based and leverage existing standards (e.g., ISO/IEC 42001-2023, ISO27001, ISO17021, 17065, SOC2, etc.) and Al tools. It will include point-in-time and continuous auditing.

Large Language Model Assets

LLM Ops

environment

monitoring

Security of the deployment

Fine-tuned

model Open vs. closed

Model

Foundation

model

Orchestrated Services

Deployment services

LLM general gateways

Plugins for Monitoring integration

Optimization Plugins

Al Applications

Decision interfaces support systems

Application-Content generation tools

Educational Integration

software

Sector-specific Accessibility applications

Data Assets

Model input

The Al Control Matrix - AlCM

- Developed by AI Controls Working Group
- Built on the foundation of the Cloud Control Matrix
- Open
- Expert-driven
- Consensus-based
- Vendor-agnostic

The AICM Components

- Threat Taxonomy (<u>published</u>)
- Control objectives to mitigate the threats (<u>peer review</u>: comments resolutions)
- Control Matrix (Relevance, Applicability, etc) (peer review: comments resolutions)
- Mappings Threat Scenarios
- Implementation and Auditing Guidelines
- Questionnaire

AI CM VO.0.1			0.1		Typical Control Applicability and Ownership				Architectural Relevance - GenAl Stack Components						Lifecycle Relevance					
Control Domain	Control Title	Centrol ID	Control Specification	Control Type	LLM OPS/Pressing Infra	MODEL	Orchestrated Services	GenAl Apps	Phys	Network	Compute	Storage	Арр	Data	Preparation	Development	Evaluation/Yalidation	Deplyment	Delivery	Retirement
Audit & Assurance - A&A			re - A&A																	
Audit & Assurance	Audit and Assurance Policy and Procedures	A&A-01	Establish, document, approve, communicate, apply, evaluate and maintain audit and assurance policies and procedures and standards. Review and update	Cloud-Specific	Shared	Shared	Shared	Shared	TRUE	FALSE	FALSE	FALSE	TRUE	TRUE	Data collection	Design	Evaluation	Orchestration	Maintenance	Data deletion

Al Controls Matrix (AICM)

AIS Application & Interface Security

BCR Business Continuity Mgmt & Op Resilience

ccc Change Control & Configuration Management

CEK Cryptography, Encryption & Key Management

DCS Datacenter Security

DSP Data Security & Privacy

GRC Governance, Risk Management & Compliance

HRS Human Resources Security

IAM Identity & Access Management

IPY Interoperability & Portability

1&S Infrastructure Security

Logging & Monitoring

MDS Model Security

SEF Sec. Incident Mgmt, E-Disc & Cloud Forensics

STA Supply Chain Mgmt, Transparency & Accountability

Threat & Vulnerability Management

UEM Universal EndPoint Management

18 Security Domains242 Control Objectives

2025 Research Initiatives

AI GOVERNANCE & COMPLIANCE

CSA Staff Facilitators: Ryan Gifford, Alex Kaluza

MISSION:

The AI Governance & Compliance aspires to be the industry's cornerstone for establishing, advocating, and disseminating governance and compliance standards for artificial intelligence. The committee aims to shape policy, influence legislation, and create benchmarks that set the gold standard.

Maria Schwenger
Legislation Taskforce

- Paper #2 (in progress):

 Expanding the Focus: Key Regulatory

 Areas for Responsible AI
- Paper #1 (published 05/2024):

 Principles to Practice: Responsible AI in a

 Dynamic Regulatory Environment
- Blogs: Al Governance, Third-Party Assessments

Dr. Chantal Spleiss
Industry Taskforce

- Paper #2 (Published on 11/14/2024):

 Al Risk Management Thinking Beyond
 Regulatory Boundaries
- Paper #1 (published 05/2024):
 Al Resilience A Revolutionary Benchmarking
 Model for Al Safety
- Currently Brainstorming ideas for next deliverable
- Blogs: Explainability, Privacy, Prompt Engineering, Resilience & Diversity

<u>Dan Stocker</u> Framework Taskforce

- Paper #1 (published 09/18/2024):
 Don't Panic! Getting Real About Al Governance
- Al Resource Hub (mutual effort): technical improvements: Dan Stocker
- Blogs: Al Legal Risks Could Increase Due to Loper Decision

Enabling Compliance Automation and Continuous Assurance

Continuous Automation Revolution

2025 Project to Modernize Approach to Compliance

- Scale compliance oversight via automation
- Normalize disparate compliance mandates to reduce duplicity
- Identify controls having positive correlation with risk reduction
- Real-time compliance information via continuous auditing and monitoring
- Simplified and accurate reporting between external stakeholders

Must address expanding Technology Footprint, Data Sprawl, and growing number of Regulatory Mandates

Objectives

The Initiative will focus on:

- Creating Free Best Practices and Standards
- Develop/Distribute Open-Source Technologies and Tools
- Community Building, Standardization, Awareness and Training

Best Practices and Standards

- Open Control Catalog extending the existing standards (i.e., CSA CCM, NIST, CIS)
- Mechanisms to tie controls to risks and support risk management programs
- Best practices on compliance engineering controls (e.g., control statement as code)
- Best practices on regulatory analysis, continuous control mapping, and gap analysis
- Open Metrics Catalog extending existing initiatives (e.g., CSA Continuous Assurance Metrics)
- Best Practices on Continuous Control Monitoring and Auditing
- Best Practices on Continuous Assurance / Compliance and Conformity Assessment Approaches

Technologies and Tools

Establishing a framework of tools and technologies, including:

- Continuous Control Implementation and Monitoring Architecture
- Automated controls testing
- Regulatory analysis and mapping providing machine-readable formats of common regulations and frameworks
- Data packaging & exchange mechanisms based on OSCAL
- Conformity Assessment Framework
- Cyber Assurance Dashboard/Registry

Strategies for Resiliency and Security

LLM Deployment Strategy

Critical Pre-planning Decisions

- 1. Relevant Company Policy
- 2. Contractual Safeguards from Commercial Provider
- 3. Thorough code review capabilities for Open Source
- 4. Mind the gap to other resources
- 5. Sandboxing techniques (e.g user prompts)
- 6. Model Verification and Automatic Provider Updates
- 7. Continuous Testing of Access (Zero Trust)
- 8. Independent audits (e.g.AICM, ISO/IEC 42001)

Discover Shadow AI and Map Dependencies

Discover and catalog sanctioned and unsanctioned Al models,

Understand unique challenges of Structured vs Unstructured Data

Al Agents, Al-X across public clouds, private environments, and SaaS applications.

Risk Assess AI and AI Agents

Evaluate risks related to data and classify AI models & AI Agents

Determine Shared Responsibility with Model, laaS and SaaS,

Ongoing Governance and Accountability

Designate corporate AI compliance function

Create policies governing AI use and dataflow

Heavily monitor AI systems

Security Controls for Data within Al models

Establish data controls on model inputs and outputs

Implement controls to prevent unauthorized access or manipulation.

Connect models to protected data sources, processes, vendors, etc

Communicate and Assess for Compliance

Set clear AI expectations in corporate policy and training

Conduct assessments to comply with new AI standards

Use AI to constantly learn latest regulation and emerging techniques

Securing LLM Systems: Critical Controls

Key Security Principles

- Never allow LLMs to make authorization decisions or handle authentication
- Implement authorization checks before data reaches LLM context window
- Treat all LLM outputs as untrusted; validate before execution
- Design for prompt injection attacks protect orchestration layer
- Cache controls must prevent unauthorized access to sensitive data
- Human review required for high-risk actions and system changes

Third-party risk should be a first priority concern

KEEP DATA CONFIDENTIAL

Consider Confidential Computing, Fully Homomorphic Encryption (FHE), Cloud Enclaves

SLA with Transparency and Continuous Assurance

Have clear expectations for the SSRM between your third-party and yourselves

ZERO TEST Architecture

Confirm, reconfirm and never trust the access previously granted

Continuous Testing WITH Provider

Global legislation will be looking for evidence of validating services firsthand. Less than 40% of entities actually perform resiliency testing on services

Key Takeaways

GenAl technologies offer significant benefits and enhance security and audit capabilities

New challenges and regulation will modify risk management practices

Update audit procedures and BCP to include AI model assessments and cloud config reviews.

Require clear understanding, documentation and audit of AI decision-making processes

Models must be regularly retrained

Troy Leach - https://www.linkedin.com/in/troyleach/

John Yeoh - https://www.linkedin.com/in/johnyeoh/

Resources:

https://cloudsecurityalliance.org/

TLeach@CloudSecurityAlliance.org / Jyeoh@cloudsecurityalliance.org

